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A Bayesian 
Approach 
to the Hodrick-Prescott Filter
Enrique de Alba y Sergio Gómez

Hodrick and Prescott (1997) proposed a smoothing 
method for economic time series usually known as 
the H-P method. They acknowledged that this meth-
od is equivalent to the Whittaker-Henderson gradua-
tion method in use among actuaries. The literature on 
smoothing methods based on their approach grew 
separately from the graduation literature, due to the 
usefulness of identifying economic cycles. Both the 
Whittaker-Henderson and the H-P methods require the 
specification of a particular constant, the smoothing 
constant, usually identified as . The specification is ar-
bitrary. In this paper we present a Bayesian approach to 
both methods that is similar to previous analyses but 
using MCMC methods. In addition Hodrick and Pres-
cott’s  is obtained as a Bayesian estimator. 

Keywords: Bayesian graduation, Hodrick-Prescott filter, 
MCMC, WinBUGS.

Hodrick y Prescott (1997) propusieron un método de 
suavizamiento para series de tiempo económicas cono-
cido como el filtro H-P. Ellos se percataron de que este 
método es equivalente al método de graduación de 
Whittaker-Henderson usado en aplicaciones actuariales. 
La literatura de métodos de suavizamiento basada en su 
enfoque avanzó de forma aislada a la correspondiente a 
la graduación debido a su utilidad para detectar ciclos 
económicos. Tanto la graduación de Whittaker-Hender-
son como el filtro H-P requieren la especificación de una 
constante, la de suavizamiento, usualmente denotada 
por . La especificación de ésta suele ser arbitraria. En 
este artículo presentamos un enfoque bayesiano para 
ambos métodos que es similar a los análisis previos, 
pero hace uso de los métodos de estimación Monte 
Carlo basado en Cadenas de Markov. Adicionalmente, la 
constante  de Hodrick y Prescott es obtenida como un 
estimador bayesiano.

Palabras clave: graduación bayesiana, filtro de Hodrick-
Prescott, Monte Carlo vía Cadenas de Markov, WinBUGS.
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Introduction

Smoothing methods for economic time series 
were derived in the econometrics literature for the 
purpose of obtaining business cycles for decision 
making, Burns and Mitchell (1946). The concept of 
trend arises naturally when carrying out statistical 
or econometric analysis of economic time series. 
This can be explained by the fact that the trend of 
a time series plays a descriptive role equivalent to 
that of a centrality measure of a data set. In addi-
tion, very often the analyst wants to distinguish 
between short- and long-term movements; the 
trend is an underlying component of the series 
that reflects its long-term behaviour and evolves 
smoothly, Maravall (1993), Heath (2012).

Hodrick and Prescott (1997) proposed a smooth-
ing approach, known as the H-P method, that is very 
similar to a procedure that had been in use among 
actuaries called graduation, Whittaker (1923). The 
original method was further developed and is 
usually known among actuaries as the Whittaker-
Henderson method. Nevertheless, the literature on 
smoothing methods based on their approach con-
tinued to grow separately from the graduation liter-
ature, due to the usefulness of identifying economic 
cycles. The H-P method requires that the researcher 
set the value of a particular constant, usually identi-
fied as , and whose specification has been some-
what arbitrary, or ad-hoc. In this paper we present a 
Bayesian approach in which Hodrick and Prescott’s 

 is obtained as a Bayesian estimator. 
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The Hodrick-Prescott Method

In this approach the observed time series is consi-
dered as the sum of seasonal, cyclical and growth 
components. Usually, however, the method is ac-
tually applied to a series that has been previously 
seasonally adjusted, so that this component has 
already been removed. Hence in their conceptual 
framework a given (previously seasonally adjusted) 
time series is the sum of a growth (or trend) com-
ponent gi and a cyclical component ci

 (1)

Their measure of the smoothness of the {gi} path 
is the sum of the squares of its second difference. 
The ci are deviations from gi and their conceptual 
framework is that over long time periods, their av-
erage is near zero. These considerations lead to the 
following programming problem for determining 
the growth components: 

(2)

 In their formulation, the parameter  is a positi-
ve number that penalizes variability in the growth 
component series. The larger the value of , the 
smoother the solution series is. For a sufficiently 
large , at the optimum, all the (gi-gi-1 

) must be ar-
bitrarily near some constant, , and therefore the  
gi arbitrarily near g

0
+ i. This implies that the limit 

of solutions to program (2) as  approaches infinity 
is the least squares fit of a linear time trend model.

Based on ad-hoc arguments Hodrick and Pres-
cott arrive at a ‘consensus’ value that is extensively 
used when analyzing quarterly data (the frequency 
most often used for business cycle analysis): the 
value of =1600. This parameter tunes the smooth-
ness of the trend, and depends on the periodicity 
of the data and on the length of the main cycle 
that is of interest. It has been pointed out that this 

parameter does not have an intuitive interpreta-
tion. Furthermore its choice is considered perhaps 
the main weakness of the H-P method, Maravall 
and del Rio (2007). The consensus value changes 
for other frequencies of observation; for example, 
concerning monthly data (a frequency seldom 
used), the econometrics program E-Views uses the 
default value 14400. 

Maravall and del Rio (2007) make two important 
remarks:

a) Given that seasonal variation should not 
contaminate the cyclical signal, the HP filter 
should be applied to seasonally adjusted se-
ries. In addition, the presence of higher tran-
sitory noise in the seasonally adjusted series 
can also contaminate the cyclical signal and 
its removal may be appropriate. 

b) It is well known that the H-P filter displays un-
stable behavior at the end of the series. End-
point estimation is considerably improved if 
the extension of the series needed to apply 
the filter is made with proper forecasts, ob-
tained with the correct ARIMA model.

Schlicht (2005) proposes estimating this 
smoothing parameter via maximum-likelihood. He 
also proposes a related moments estimator that is 
claimed to have a straightforward intuitive inter-
pretation and that coincides with the maximum-
likelihood estimator for long time series, but his 
approach does not seem to have had acceptance.

Guerrero (2008) proposed a method for estimat-
ing trends of economic time series that allows the 
user to fix at the outset the desired percentage of 
smoothness for the trend, based on the Hodrick-
Prescott (H-P) filter. He emphasizes choosing the 
value of  in such a way that the analyst can spec-
ify the desired degree of smoothness. He presents 
a method that formalizes the concept of trend 
smoothness, which is measured as a percentage. 
However, there is no clear interpretation of the de-
gree of smoothness nor an objective procedure for 
determining the percentage of smoothness one 
would want in a given situation.

yi = gi + ci for  i = 1,...,T
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Bayesian Seasonal Adjustment

In a related paper Akaike (1980) proposed a Baye-
sian approach to seasonal adjustment that allows 
the simultaneous estimation of trend (trend-cycle) 
and seasonal component. He starts by assuming 
that the series can be decomposed as 

 (3)

where Ti , represents the trend component, Si is 
the seasonal component with fundamental period 
p and i a random or irregular component. These 
components can be estimated by ordinary Least 
Squares (OLS), if we minimize

However, in seasonal adjustment procedures 
there are usually some constraints imposed on the 
Ti and Si. On one hand there is a smoothness requi-
rement that he imposes by restricting the sum of 
squares of the second order differences of Ti, that 
is (Ti -2Ti-1+Ti-2 ), to a small value. Similarly, the gra-
dual change of the seasonal component is impo-
sed by requiring that the sum of square differences 
in the seasonal components. (S_i -S_{i-p})  be small. 
The usual requirement that the sum of S

i
’s within 

a period be a small number is also imposed in this 
manner. Thus a constrained Least Squares problem 
is formulated, and the following expression should 
be minimized:  

where d,r,z are unknown constants whose values 
must be specified. The constrained LS problem, as 
stated by Akaike (1980), is then to find the M dimen-
sional vector  a that minimizes

 
(4)

where X  is an NxN matrix, a0 is a known vector,  
|| || denotes the Euclidean norm, and R is a positive 
definite matrix. But minimizing (4) is equivalent to 
maximizing

where  
2 is a positive constant. He points out that 

the constrained LS problem is equivalent to the 
maximization of the posterior distribution of the 
vector a assuming the data distribution is multi-
variate Normal

 (5) 

and the prior distribution a of , given by

(6)

Akaike (1980) assumes R=DTD, where D is an  
LxM matrix of rank M , so that we can write 

and

where its minimum is attained at 

Hence we conclude that the previous solution is 
the posterior mean of a, whose posterior distribu-
tion is given by 

 

(7)
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If there is no seasonal component, or if has been 
previously removed, then the constrained LS is 
equivalent to the H-P method with =d2. Under 
this formulation  has a very specific meaning.

Bayesian Graduation

Because of some developments in the actuarial lite-
rature are related, de Alba and Andrade (2011), we 
will briefly describe the more relevant ones. Kimel-
dorff and Jones (1967) presented a first proposal for 
Bayesian Graduation. They consider simultaneously 
estimating a set of mortality rates for many different 
ages. They point out that one (implicit) assumption 
that actuaries have been making is that the true mor-
tality rates form a smooth sequence, so that gradua-
tion has traditionally been associated to smoothing. 
The smoothness constraint is not made explicitly.

In a more recent paper Taylor (1992) presents a 
Bayesian interpretation of Whittaker-Henderson 

graduation. The relation between Whittaker-Hen-
derson and spline graduation is identified. He also 
points out similarities to Stein-type estimators. But 
the part relevant to this paper is the reference to 
the loss function. He defines a loss function (under 
our notation) 

where Δ is the difference operator and wi=1/Var(yi). 
The constant c assigns relative weights to de-
viation and smoothness and is called the relativity 
constant. He indicates that one of the difficulties in 
this approach is the lack of theory guiding the choice 
of c, and that the principles according to which the 
selection is made are only vaguely stated. Thus the 
constant somehow measures the extent to which 
the analyst is willing to compromise adherence to 
the data in favor of smoothness, so that 1/ c may 
be viewed as the variance on a prior on whatever 
smoothness measure is used, usually some order of 
differencing. 

Hickman and Miller (1978) discuss Bayesian gra-
duation in which c is also assigned a prior distri-

bution. Carlin (1992) presents a simple Bayesian 
graduation model, based on Gibbs sampling, that 
simplifies the problem of prior elicitation.

In the context of graduation, in the actuarial sen-
se Guerrero et al. (2001) propose an index to mea-
sure the proportion of P in (P + Q)-1, where P and 
Q are N×N positive definite matrices. He mentions 
that this index was originally employed by Theil in 
1963. It is given by

where tr(.) denotes trace of a matrix. This is a mea-
sure of relative precision that satisfies the following 
properties: (i) its values are between zero and one; 
(ii) it is invariant under linear nonsingular transfor-
mations, (iii) it behaves linearly and (iv) it is sym-
metric. From this, the index of smoothness is de-
fined as 

 (8)

where K 
,
K

2
 determines the precision matrix of the 

trend in his model. This index depends only on the 
values  and N, because K

2
is fixed. 

Except for Hickman and Miller (1978), in all the 
previous references the relativity constant c (or 
the relative precision h or ) are either assumed 
known or assigned arbitrarily, or set to achieve 
a ‘desired’ degree of smoothness. Here we use a 
Bayesian formulation similar to the one given by 
(5)-(7). We assume that the observed values y are 
generated from a multivariate Normal with mean 
a, and precision matrix  IN , i.e.

and the prior distribution of the vector a is given by

2
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To complete the specification we assign gamma 
priors to k and δ, and we must set a0 equal to some 
known judiciously specified value. Then we let the 
prior precision matrix R= δDTD, where D is chosen 
so that Da  is a vector of second differences, except 
for the first and second terms, that is   

(9)

The posterior distribution for the vector a can 
now be obtained by MCMC using WinBUGS, using 
as prior information the vector a

0
, in the model 

described above. We proceed to illustrate using a 
real example. 

.

An Application of Bayesian Seasonal 
Adjustment and Smoothing

Here we use a time series of Mexican quarterly GDP, 
from the first quarter of 1993 to the fourth quarter 
of 2011, Table A.1 in Appendix 1. Figure 1

 
shows the 

original data
 
(corrected for calendar days) and the 

seasonally adjusted series, as published by INEGI, 
see http://www.inegi.org.mx/sistemas/bie/.

The H-P filter is usually applied to seasonally ad-
justed data, Hodrick and Prescott (1997). However, 
in the Bayesian setup, if we use a model like the 
one proposed by Akaike (1980), this is not neces-
sary. We first apply the Bayesian model based on 
this formulation, so that the exponent in (6) is

Figure 1

Mexican GDP
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Notice that unlike Akaike's model, for simpli-
city, in this expression we set r = z. In

 
particular 

τ2= δ2r2= δ2z2.

Next, we obtained the posterior distribu-
tion for the vector of Mexican GDP and for the 
two parameters k and δ, assuming a-priori that
k ˜ Ga (1,0.01) and δ ˜ Ga (1,0.001). This was done 
with WinBUGS. These are non-informative priors. 
We generated 52000 samples and dropped the 
first 2000 as burn in. We suggest that the mean of 
their posterior distributions are a natural choice 
for these parameters, and not ad-hoc as currently 
available procedures. 

Figure 2 compares the estimated series. The 
dots represent the original unadjusted series. The 
one labeled INEGI shows the official seasonally ad-
justed (trend-cycle) series. The “linear trend” pro-
vides the prior values for the vector a. The curve 
labeled posterior “mean of a” provides a Bayesian 
estimate of the trend-cycle. Except for periods in 

1994 and 2009 where there were abrupt changes, 
both INEGI and Bayesian are very close. The poste-
rior means of the parameters were the following: 
E(k|y)=317.9, E(δ|y)=188.0 and E(τ|y)=542.7. The-
se are estimates that minimize the expected value 
of a quadratic loss function with respect to the pos-
terior distribution of the parameters. The complete 
distribution can be analyzed and probability state-
ments obtained. 

This is in contrast to the values suggested by 
Hodrick and Prescott (1997), who based on ad-hoc 
arguments arrive at a ‘consensus’ values. In the sea-
sonal adjustment framework Akaike (1980) indica-
tes that these values must be ‘judiciously’ chosen; 
and Ishiguro (1984) states they must be ‘suitably’ 
chosen.  In the latter, the constant equivalent to  
is estimated by minimizing the statistic ABIC.

However, considering that =(δ|k), then, in or-
der to make the results strictly comparable to the 
formulation of Akaike (1980), we now carry out 

Figure 2

Bayesian smoothing of original series (corrected for calendar days)
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the simulation with the constraint that k=1.0 Figu-
re 3 shows the resulting series. The Bayesian trend 
is much smoother than before. This is in accordan-
ce with the kind of results obtained from Akaike 
(1980). It corresponds to the posterior mean of the 
vector a, and it is a Bayesian estimate of the trend of 
the series. Figure 4 shows the corresponding Baye-

sian estimates of the seasonal components. Clearly 
it is not a constant seasonal pattern, as might be 
expected from the observed behavior of the series, 
especially after 2009. We do not pursue this further 
here since it is not the purpose of the paper. In this 
case the posterior means of the parameters were 
the following:  E(δ|y)=2815 and E(τ|y)=1243.9. 

Figure �

Bayesian smoothing of original series (corrected for calendar days)

Figure �

Seasonal component b
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This example shows how the Bayesian approach 
to seasonal adjustment can be carried out and the 
estimates of the trend-cycle and the seasonal com-
ponent are obtained as the posterior mean of the 
specified parameters.

Bayesian Analysis of the Hodrick-
Prescott Filter  

The H-P method is normally applied to series that 
have been previously adjusted for seasonality, so 
that now we apply the Bayesian model to the INEGI 
series without a seasonal component. This is equi-
valent to the Akaike procedure but leaving out the 
seasonal component. We apply it to the same Mexi-
can GDP series. This will also allow us to analyze the 
degree of smoothness using the results of Guerre-
ro (2008). The posterior means of the parameters 
are now E(δ|y)= 152 and E(k|y)= 413.8.  

Figure 5 shows the resulting series from apply-
ing the Bayesian version of the H-P method. The 

resulting Bayesian estimate (red line) is very close 
to the original INEGI series. This is to be expected 
since it corresponds to the Bayesian estimator of a 
trend-cycle for the series, specifying a prior distri-
bution for each one of the parameters, δ and k. 

We now analyze the smoothness of the series. 
Under the Bayesian model, the expression for the 
degree of smoothness in equation (8) becomes  

(10)

where R is the precision matrix of the prior dis-
tribution as given in (6) with R= δDTD and D de-
fined as in (9). Allowing for both parameters, δ and 
k to have a prior distribution, so that at each stage 
of the simulation =(δ|k), results in a trend-cy-
cle curve that has a mean smoothness of 47.8%. 
Figure 6 shows the posterior distribution of the 
degree of smoothness. Table 1 presents the statis-
tics of the posterior distribution of the percentage 
of smoothness: the mean, standard deviation and 
some quantiles. The Bayesian approach has the 

Figure �

Bayesian smoothing of seasonal adjusted series  = �
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additional advantage that it is possible to obtain 
probability intervals for the trend, by using the 
quantiles of the posterior distribution of the vec-
tor a. Figure 7 shows the smoothed curve together 
with 95% probability intervals.

mean sd 2.5% 25% 50% 75% 97.5%

 0.478 0.077 0.326 0.425 0.479 0.532 0.624

Table 1

Statistics of the posterior distribution for degree 
of smoothness

Figure �

Posterior density function for the degree 
of smoothness

However, in order for our estimate to be compa-
rable to that obtained assigning a value to , as it 
is done when applying H-P, we can do the follow-
ing: if we ‘standardize’ the observed data dividing 
by the square root of its variance zi= yi / y= yik

1/2 
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then  y ~ N(b,IN) and the prior is b ~ N(b
0 , R) where 

=(δ/k), prior precision divided by the precision of 
the variables.  Hence, if we set the parameter k=1 
in the WinBUGS code then δ is directly compara-
ble to . Thus, we run WinBUGS using the season-
ally adjusted series as input, with k=1.0 and no 
seasonal component, since it has been removed 
beforehand. In this case the posterior mean ob-
tained was E(δ|y)=2764. As before, the estimates 
minimize the expected value of a quadratic loss 
function with respect to the posterior distribu-
tion of the parameters. The complete posterior 
distribution can be analyzed and probability 
statements obtained. This in contrast to the value 
suggested by Hodrick and Prescott (1997), who 
based on ad-hoc arguments arrive at a ‘consen-
sus’ value =1600 when analyzing quarterly data 
(the frequency most often used for business cy-
cle analysis); they similarly suggest other values 
for annual ( =100) and monthly data ( =14400). 
Throughout the previous Bayesian analyses we 

have used as prior values, the vector, a0 the re-
sults of fitting a linear trend to the data.

Further Analysis

To illustrate further the degree to which the Baye-
sian estimations agree, or not, with the H-P filter, 
Figure 8 shows the trend obtained by the Bayesian 
model and by applying H-P with  =1600  using 
the econometric package EViews. They differ very 
slightly at the end of the series. The important thing 
here is that the posterior mean of δ (or equivalently 

) is an estimate of the smoothing constant in the 
H-P method.

Now we modify the priori distribution for δ and  
 by setting (forcing) the mean of the prior distri-

bution to be 1600, the value recommended to use 
for  on quarterly data with the H-P filter, i.e. in Ba-
yesian notation E( )=1600. This will again allow us 

Figure �

Bayesian smoothing vs. Hodrick-Prescott Filter. Seasonal adjusted series with  = � 
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to analyze the resulting degree of smoothness as 
computed from the simulations using expression 
(10). Since traditionally H-P is applied to seasonally 
adjusted series we will take as our observed series 
the INEGI seasonally adjusted Mexican GDP series, 
see http://www.inegi.org.mx/sistemas/bie/.

Recalling that if we set the parameter k=1 in the 
WinBUGS code then  is directly comparable to δ 
we run WinBUGS using the seasonally adjusted 
series as input, with k=1.0 and we obtain that 
E( |y, prior=1600)=3329 a value for  well within 
the range of ad-hoc values suggested by Hodrick 
and Prescott (1997). This compares well with the 
previous value obtained without restricting the prior 
mean, E( |y)=2764. Figure 9 shows its posterior dis-
tribution and Table 2 the corresponding statistics. 

In Figure 10 we compare the two smoothed se-
ries from H-P using =1600 and the one obtained 
with the Bayesian procedure restricting the prior 
mean as E( )=1600. As in the previous case, the Ba-
yesian approach has the additional advantage that 
it is possible to obtain probability intervals for the 

Figure �

 density function.  = �

mean sd 2.5% 25% 50% 75% 97.5%

3329 1776 837 1996 3011 4362 7557

Table 2

Statistics of the posterior distribution for  
setting  E( prior) = 1600

Figure 10

Bayesian smoothing vs. Hodrick-Prescott Filter. Seasonal adjusted series with  = � and E[ ] = ��00
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trend, by using the quantiles of the posterior distri-
bution of the vector a, Figure 11.

Confidence intervals are also obtained in Guer-
rero (2007), using an unobserved components 
model. He uses pre-specified smoothness of 60% 
and =0.96. He indicates that “even if the … value of  

 has been established by the standard application 
of the smoothing method (e.g. 1600), we should be 
aware that the smoothness achieved varies accord-
ing to the sample size.” So that “The basic proposal 
… is to select the percentage of smoothness at the 
outset, instead of the smoothing constant.” However 
it is not clear how to choose this percentage.

As would be expected, the smoothness in this 
case is more than when allowing a variable κ. The 
posterior distribution for the smoothness index is 
given in Figure 12 and its statistics are provided 
in Table 3. The posterior mean is 95.1%. If the co-
rresponding smoothness index is obtained for the 
H-P procedure with =1600 it results in a value of 
93.08, which is very close.

Figure 11

Probability intervals for the posterior mean of a

mean sd 2.5% 25% 50% 75% 97.5%

0.951 0.00731 0.934 0.947 0.952 0.956 0.962

Table �

Statistics of the posterior distribution for 
degree of smoothness

Final Remarks

As a final output, Figure 13 shows a ¨summary¨ of 
the previous results. The main point is that the re-
sults from the Bayesian approach provide a natu-
ral way for obtaining the smoothing constants. 
Furthermore, they are obtained with a wealth of 
additional information that can be used for more 
thorough analyses. For example it can also be 
used to obtain the Business Cycles, Heath (2012), 
and probability intervals for them. This is not done 
here because it is beyond the scope of the paper. 
Clearly, using some previoiusly given value, as is 
done in H-P has many implications for the results 
(trend, confidence limits, etc.) depending on sam-
ple size, and the data themselves.
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Figure 12

Posterior distribution of the degree of 
smoothness using E( prior) = 1600

Figure 1�

Bayesian smoothing of Mexican GDP
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Real GDP of Mexico (trillions of pesos)    

1993/01 5.7080 2002/03 7.5170

1993/02 5.8279 2002/04 7.6701

1993/03 5.8578 2003/01 7.3353

1993/04 6.0929 2003/02 7.5724

1994/01 5.9240 2003/03 7.5353

1994/02 6.1100 2003/04 7.7812

1994/03 6.1532 2004/01 7.5874

1994/04 6.4248 2004/02 7.8573

1995/01 5.8009 2004/03 7.8713

1995/02 5.6243 2004/04 8.1333

1995/03 5.6919 2005/01 7.8456

1995/04 5.9622 2005/02 8.0425

1996/01 5.8658 2005/03 8.1417

1996/02 5.9815 2005/04 8.4240

1996/03 6.0735 2006/01 8.2165

1996/04 6.4276 2006/02 8.5840

1997/01 6.2100 2006/03 8.5636

1997/02 6.4329 2006/04 8.7653

Table A.1            Continues

Appendix 1
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Real GDP of Mexico (trillions of pesos)    

1997/03 6.5699 2007/01 8.4662

1997/04 6.8984 2007/02 8.8362

1998/01 6.6365 2007/03 8.8599

1998/02 6.8091 2007/04 9.0797

1998/03 6.8917 2008/01 8.7630

1998/04 7.0722 2008/02 8.9349

1999/01 6.8500 2008/03 8.9777

1999/02 6.9800 2008/04 8.9821

1999/03 7.1482 2009/01 8.0000

1999/04 7.4102 2009/02 8.1741

2000/01 7.2674 2009/03 8.4727

2000/02 7.4994 2009/04 8.7885

2000/03 7.6043 2010/01 8.4206

2000/04 7.7114 2010/02 8.7529

2001/01 7.2791 2010/03 8.9287

2001/02 7.4571 2010/04 9.1769

2001/03 7.4831 2011/01 8.7314

2001/04 7.5763 2011/02 9.0922

2002/01 7.1768 2011/03 9.3322

2002/02 7.4544 2011/04 9.5146

Source: http://www.inegi.org.mx/sistemas/bie/.

Table A.1             Concludes


