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Early Monthly Estimation 
of Mexico’s Manufacturing Production Level 

Using Electric Energy Consumption Data

Daniel Alba Cuéllar and Hugo Hernández Ramos*

Estimación oportuna mensual 
del nivel de producción manufacturera en México mediante

el uso de datos de consumo de energía eléctrica

Directly measuring the monthly Manufacturing Produc-
tion Level in Mexico via national accounting methods 
is an elaborate process, yielding a preliminary figure 
approximately 40 days after the end of the reference 
month. A separate analysis conducted by INEGI (Mexi-
co’s National Statistical Office) showed that in Mexico’s 
manufacturing sector, there is a significant linear rela-
tionship between Electric Energy Consumption and 
Production Level. Currently, Electric Energy Consump-
tion data from the Federal Electricity Commission (CFE) 
are made available to INEGI approximately 15 days after 
the end of the reference month; this timeliness in the 
availability of CFE data, combined with the observed 
linear relationship, allowed INEGI to build an econome-
tric model which produces early estimates for the Pro-
duction Level Index. In this paper we describe the initial 
analysis conducted by INEGI to build a model which ex-
plains the relationship between both variables; then we 

La medición directa del nivel de producción manufactu-
rera mensual en México por medio de métodos de con-
tabilidad nacional es un proceso elaborado que arroja 
una cifra preliminar aproximadamente 40 días después 
del final del mes de referencia. Un análisis realizado por 
el Instituto Nacional de Estadística y Geografía (INEGI) 
mostró que en el sector manufacturero del país existe 
una relación lineal significativa entre el consumo de 
energía eléctrica y el nivel de producción. Actualmente, 
los datos de la Comisión Federal de Electricidad (CFE) 
correspondientes a la primera variable se ponen a dis-
posición del INEGI alrededor de 15 días después del 
final del mes de referencia; esta oportunidad en la dis-
ponibilidad de información de la CFE, combinada con la 
relación lineal observada, permitió al Instituto construir 
un modelo econométrico que produce estimaciones 
tempranas para el Índice de Nivel de Producción. En 
este artículo, describimos el análisis inicial realizado por 
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describe the characteristics and evolution of the “defini-
tive” econometric model, and compare early estimates, 
computed in real time, against official Production Level 
figures, as an empirical means for evaluating early es-
timation accuracy. We observed that 93% of the time, 
the official figure is located inside the estimation limits, 
which were computed with a 95% confidence level; this 
means that, in this case, observed empirical accuracy 
approached the theoretical confidence level. Finally, in 
this paper we comment about INEGI’s data sharing ex-
perience with CFE and talk about future steps to impro-
ve this nowcasting process. 

Key words: linear regression; nowcasting; macroecono-
mic indicators; electric energy consumption; manufac-
turing activity level index.

este organismo del Estado mexicano para determinar el 
modelo que explica la relación entre ambas variables; 
luego, explicamos las características y la evolución del 
modelo econométrico definitivo y comparamos las es-
timaciones oportunas, calculadas en tiempo real, con-
tra las cifras oficiales de nivel de producción, a modo de 
evaluación empírica. Observamos que 93 % de las veces, 
la cifra oficial se encuentra dentro de los límites de esti-
mación, que se calcularon con un nivel de confianza de 
95 %; esto significa que la precisión empírica observada 
se acerca al nivel de confianza teórico. Finalmente, en 
este documento comentamos sobre la experiencia de 
intercambio de datos entre el INEGI y la CFE, y contem-
plamos posibles pasos futuros para mejorar este proce-
so de estimación.

Palabras clave: regresión lineal; nowcasting; indicadores 
macroeconómicos; consumo de energía eléctrica; Índice 
de Nivel de Producción.



6 REALIDAD, DATOS Y ESPACIO    REVISTA INTERNACIONAL DE ESTADÍSTICA Y GEOGRAFÍA

1. Introduction

The aggregate Production Level in Mexico’s Manu-
facturing Sector is a key macroeconomic variable 
which gives policymakers important clues about 
the health status of the national economy, given 
Mexico’s Manufacturing Sector significant contri-
bution to the National Gross Domestic Product. 
The objective of this paper is to describe the used 
methodology aimed to investigate the functional 
relationship between electric energy consump-
tion and production level in Mexico’s manufactur-
ing sector; it is of great interest to know such func-
tional relationship, since the process for measuring 
the Monthly Manufacturing Production Level In-
dex (IMAI-31-33) by means of national accounting 
methods is rather elaborate and time-consuming, 
while the process for measuring the consumption 
of electric energy in Mexico’s manufacturing sec-
tor is faster and more direct. One would hope that 
if the latter variable is known in a timely fashion, 
then it would be feasible to obtain, in an econom-
ical way, an early estimate of the manufacturing 
production level, assuming we know the function-
al relationship between both variables.

Analysis of Monthly data collected by the Fed-
eral Electricity Commission (CFE) and by INEGI 
(Mexico’s National Statistical Office) shows that 
there is a strong linear relationship between elec-
tric energy consumption and production level ag-
gregated at the manufacturing sector level and at 
national level, so it seems appropriate to use lin-
ear regression methods to estimate the functional 
relationship between these variables. In practice, 
INEGI obtains, at establishment level, monthly ob-
servations for both the consumption of electric en-
ergy and the volume of production (industrial ac-
tivity), although at different moments in time: on 
the one hand, electric energy consumption data 
for establishments are provided to INEGI by CFE, 
approximately 15 days after the end of the refer-
ence month, while on the other hand, volume of 
production data at establishment level are collect-
ed, analyzed, processed, and published by INEGI’s 
System of National Accounts (SNA) in aggregate 
and preliminary form, approximately 40 days af-

ter the end of the reference month; the empirical-
ly observed linear relationship between the two 
variables at the aggregate national manufacturing 
sector level, coupled with the timeliness of the 
data provided by CFE, allow INEGI to obtain good 
early estimates of the production level in Mexico’s 
manufacturing sector.

Obtaining a regression model to generate good 
early estimates for the IMAI-31-33 indicator, based 
on electric energy consumption data, requires fair-
ly long-time series; for the production level in Mex-
ico’s manufacturing sector, INEGI has compiled 
monthly observations starting from January 1993; 
thus, as of February 2020, the IMAI-31-33 time se-
ries contains more than 27 years of monthly obser-
vations; on the other hand, INEGI, with data from 
CFE, has compiled monthly electric energy con-
sumption observations starting from January 2013; 
from these CFE monthly observations, INEGI built an 
electric energy consumption indicator for Mexico’s 
manufacturing sector, called ICEE (both ICEE and 
IMAI-31-33 are acronyms in Spanish). Thus, ICEE 
is a time series with more than 84 monthly obser-
vations (7 years of monthly observations). This, of 
course, means that we cannot use all the available 
IMAI-31-33 observations for the construction of 
a regression model if we want to include ICEE as 
an explanatory variable. Fortunately, now ICEE is 
long enough to build statistically valid regression 
models. 

This paper is structured as follows: section 2 de-
scribes the origin and characteristics of the data 
used in our analysis; section 3 describes how we 
prepare our data for the construction of regression 
models. Section 4 describes the characteristics of 
some regression models fitted to the prepared 
data that were available to us back in 2015, when 
our objective was to arrive at a functional model 
for generating early estimations (nowcasts) for the 
IMAI-31-33 indicator as a function of electric ener-
gy consumption; we begin with a simple two-vari-
able linear regression model, and then we progress 
towards models that overcome the deficiencies of 
their predecessors. Section 5 shows out-of-sample 
estimates obtained with the models from section 
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4, and their accuracy assessments by comparing 
them against officially published IMAI-31-33 val-
ues; the evidence shown in sections 4 and 5 will 
help us select a “definitive” working model to gen-
erate subsequent IMAI-31-33 nowcasts. Section 
6 shows the complete sequence of IMAI-31-33 
nowcasts generated by the “definitive” model se-
lected in section 5, running from August 2015 to 
February 2020; we compare this sequence of esti-
mated values against officially published IMAI-31-
33 values, and comment on the changes the “de-
finitive” model has undergone across time. Finally, 
section 7 briefly describes INEGI’s data sharing ex-
perience with CFE, and discusses possible avenues 
for future work.

2. Origin and characteristics 
     of the data

CFE data

As mentioned above, electric energy consumption 
data are provided to INEGI by CFE on a monthly 
basis, approximately 15 days after the end of the 
reference month; these data contain electric en-
ergy consumption values, at user (establishment) 

level, which start at January 2013. Table 1 shows the 
structure of CFE monthly data provided to INEGI.

In Table 1, fields with an asterisk (*) at the end of 
their names are used for record linkage activities, 
while fields with two asterisks (**) at the end of their 
names are used for determining which CFE user 
(establishment) records to include in the sample 
employed in the computation of the ICEE indicator. 
Of particular importance is field k_YYYYMM, which 
in itself contains the electric energy consumption 
data, in kWh. As of February 2020, INEGI receives 
each month about five million CFE user records 
belonging to the industrial (including manufac-
turing) trade and services economic sectors. Fields 
k_YYYYMM and i_YYYYMM are available simultane-
ously in a monthly dataset for several months; CFE 
sends revised data for all months from the current 
year and from the previous year, so, for example, 
CFE data sent after the end of reference month Feb-
ruary 2020, contains data for each month of 2019, 
and data for January 2020 and February 2020. 

The record linkage activities (not described in 
this paper) and the analysis and experiments de-
scribed below, were conducted by the area of Sta-
tistical Linkage of Economic Administrative Regis-

Table 1               Continue

Structure of CFE Administrative Data provided to INEGI

Field name Description

rpu* User’s Permanent Record key (Establishment’s ID key), assigned by CFE

num_cta Service’s Account Number associated to user, assigned by CFE

estatus** Code for Status of Service (Active, Suspended, Closed down, etc.)

nombre* User’s name

direccion* User’s address (street name and building number)

colonia* Name of residential subdivision for user´s address

cve_edo* Mexican State code for user´s address

estado* Mexican State name for user´s address

cve_mpio* Municipality code for user´s address

municipio* Municipality name for user´s address

poblacion* Name of Settlement or City for user´s address

e_calles1* Name of contiguous street # 1 for user´s address

e_calles2* Name of contiguous street # 2 for user´s address
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Table 1               Concludes

Structure of CFE Administrative Data provided to INEGI

Field name Description

cp* Postal code for user´s address

Telefono User’s telephone number (censored by CFE)

rfc* User ID as a Business, assigned by Mexico’s Federal Tax Agency

fecha_alta Service’s starting date

Tarifa Code for type of service tariff specified in contract between CFE and user

Hilos Number of phases specified in contract between CFE and user

tipo_sumin Code for supplying method specified in contract between CFE and user

carga_inst Installed load specified in contract between CFE and user

dem_contra Demand cap specified in contract between CFE and user

cve_empre Centralized Collection Agency code

Empresa Centralized Collection Agency name 

giro_scian Code of economic activity carried out in the establishment, according to CFE

x_lectura* X coordinate for energy meter’s geographic location, in UTM format

y_lectura* Y coordinate for energy meter’s geographic location, in UTM format

x_reparto* X coordinate for invoice delivery place, in Latitude-Longitude format

y_reparto* Y coordinate for invoice delivery place, in Latitude-Longitude format

medidor1 Energy meter #1 ID Code

medidor2 Energy meter #2 ID Code (if applicable)

medidor3 Energy meter #3 ID Code (if applicable)

medidor4 Energy meter #4 ID Code (if applicable)

medidor5 Energy meter #5 ID Code (if applicable)

tipo_fact** Invoice issuing type (code) specified in contract

k_YYYYMM** energy consumption (in kWh) recorded in year YYYY, month MM 

i_YYYYMM** cost of electric energy consumed in year YYYY, month MM, in current pesos

ters (DVERA, its acronym in Spanish), which is part 
of INEGI. The record linkage process allowed 
DVERA to retrieve the correct North American In-
dustry Classification System (NAICS) code at estab-
lishment level from INEGI’s Statistical Business Reg-
ister (SBR); we’ll see in section 3 why it is important 
to have the correct NAICS economic-activity-clas-
sification code associated to CFE user records. Al-
though the CFE data already contain information 
on the class of economic activity (field “giro_scian” 
in Table 1), it has been observed that NAICS classi-
fication codes from CFE are in many cases missing 
or incorrect, since this piece of information is filled 
in by CFE according to the user’s own declaration 

when establishing a service contract with CFE. Us-
er’s name, business ID from the Federal Tax Agen-
cy, and data from address and geographical loca-
tion fields are used to link CFE records (uniquely 
identified by their “rpu” keys) to SBR establishment 
records by means of probabilistic record linkage 
techniques.

Missing values in CFE data

Some Missing values in fields k_YYYYMM and i_
YYYYMM are usually observed for the most recent 
month (i.e., for the reference month). The sooner 
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CFE delivers its monthly data to INEGI, the great-
er the number of missing values at the reference 
month; this is probably due to unregistered month-
ly invoices at the time of data compilation by CFE; 
this hypothesis is later confirmed when revised CFE 
data arrives in subsequent months. To fill in missing 
values, DVERA uses a simple 2-step procedure: 

1.   For all CFE records r with complete elec-
tric energy consumption data in reference 
month M and previous month M-1, belong-
ing to a given manufacturing subsector S 
(according to the NAICS classification code 
from INEGI’s SBR), compute the proportion 
ps= ∑ rϵscr,M /  ∑ rϵscr,M-1 , where cr,M  is the elec-
tric energy consumption of establishment 
r at month M. ps can be interpreted as an 
approximation to the monthly growth rate 
in electric energy consumption for manu-
facturing subsector S at reference month 
M.

2.   For each record  in manufacturing subsec-
tor S with missing value ci,M, assign ci,M = pS 
ci,M -1.

NB: This 2-step procedure only takes into ac-
count records included in a sample of CFE records 
especially designed to build the ICEE indicator. Be-
low we give some more details about the construc-
tion of this CFE sample.

CFE records included in the calculation of 
the ICEE indicator

Depending on the type of contract that an es-
tablishment signs with CFE, its electric energy 
consumption invoice can be issued once every 
month, or once every other month; this is indicat-
ed by the “tipo_fact” field from Table 1. Large es-
tablishments generally receive their CFE invoices 
(and their consumptions recorded into CFE data-
base) once every month. These large establish-
ments have a high probability of being included 
in the sample employed for calculating the ICEE 
indicator, since the main inclusion criterion is to 
consider those CFE establishments who are sta-

tistically linked to a special subset of INEGI’s SBR, 
called INEGI master sample, which contains the re-
cords of the largest establishments in the nation-
al economy (the size of an SBR establishment is 
measured jointly by number of employees and in-
come), and serves as a basis for constructing sam-
ples used by INEGI’s national economic surveys. 
According to data from the 2014 economic cen-
sus, although large establishments only represent 
4% of the total number of establishments in the 
manufacturing sector, they contribute with 88% 
of the total income and 68% of the total number 
of employees in that same sector. As of February 
2020, our sample for building the ICEE indicator 
contains 17,085 CFE records from the manufac-
turing sector with monthly invoicing frequency; 
it is worth mentioning that this sample has been 
growing steadily since we started with this proj-
ect back in the second half of 2015. When the first 
early IMAI-31-33 estimate was generated, corre-
sponding to reference month August 2015, our 
sample for building the ICEE indicator contained 
7,744 CFE records. Periodically, CFE data are an-
alyzed by DVERA to update the CFE sample for 
computing the ICEE indicator by detecting closed 
down records (which does not necessarily imply 
that the corresponding establishment has closed 
down) or new records; these new records some-
times correspond to new establishments and 
sometimes correspond to existing establishments 
who updated their contract with CFE. From here 
on, we can see that CFE data can also be used to 
periodically update INEGI’s SBR.

Complementary electric energy 
consumption data

In Mexico, there are a few manufacturing busi-
nesses who also generate electric energy for 
self-consumption. Mexico’s Federal Government 
has an administrative register, at establishment 
level, for these self-sufficient businesses, which 
is managed by an agency, very closely related 
to CFE, called the National Center of Energy Con-
trol (CENACE for its acronym in Spanish). Start-
ing from the calculation of the early IMAI-31-33 
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estimate corresponding to reference month au-
gust 2016, we incorporated 43 CENACE records 
to our CFE sample for computing the ICEE indi-
cator. As of February 2020, our sample includes 
66 CENACE records, who represent 1.7% of the 
total electric energy consumption recorded in 
our sample across all months. Of course, these 66 
CENACE records were also linked to INEGI’s SBR, 
in order to retrieve their correct NAICS economic 
activity codes. 

Data from the System of National 
Account 

DVERA obtains production level data for manu-
facturing industries in Mexico directly from the 
Manufacturing Production Level Index, IMAI-31-
33. This indicator, aggregated at the economic 
sector level, is published on a monthly basis by 
the System of National Accounts of Mexico (SNA) 
at the INEGI website. Since the construction pro-
cess for the IMAI-31-33 indicator by the SNA de-
pends on survey-collected data, it is published 
approximately 40 days after the end of the ref-
erence month. For the manufacturing sector in 
Mexico, we initially observed that the linear cor-
relation coefficient between ICEE and IMAI-31-33 
is high, close to positive 1 (see figure 1); from this 
point, we see that it is feasible to have a good no-
tion, several days in advance, about the magnitude 
of the next monthly “true” published IMAI-31-33 
value, by using CFE electric energy consumption 
data, along with a properly built regression model.

NB: In this paper we work only with non-season-
ally adjusted time series; this choice, in our expe-
rience, produces better results, as we have seen 
after several exercises with linear regression mod-
els involving both non-seasonally adjusted and 
seasonally adjusted time series. If we want to ob-
tain a seasonally-adjusted nowcast for IMAI-31-33 
as a function of electric energy consumption, we 
can simply append our non-seasonally adjusted 
nowcast to the non-seasonally adjusted IMAI-31-33 
time series itself, and then use a seasonally adjust-
ing software, such as x-13arima-seats.

3. Data preparation to conduct 
      a regression analysis

With the data provided by CFE and SNA, month-
ly data on electric energy consumption and on 
volume of production, respectively, are available 
for the main manufacturing industries in Mexico. 
From these data, it is possible to build two monthly 
frequency time series:

• Time series Xt: electric energy consumption 
index for Mexico’s manufacturing sector 
(ICEE).

• Time series Yt: production level for Mexico’s 
manufacturing sector.

Here, subscript t indicates the month to 
which a measurement for any of these two 
variables corresponds.

The Yt variable is simply a subset of the IMAI-
31-33 time series1 mentioned above, which 
can be located within the IMAI file: Original se-
ries - Physical volume indices, base 2013 = 100, 
namely in the row labeled as “31-33 - Indus-
trias manufactureras”. This file can be directly 
downloaded on the following link (in Span-
ish): https://www.inegi.org.mx/temas/imai/
#Tabulados.

To generate variable Xt from CFE data, the 
following procedure was defined:

1.   For each month t, sum the weighted electric 
energy consumption values corresponding 
to all CFE records in our sample:

                             ∑rws(r),t cr,t ;s t =  
      
  cr,t is the electric energy consumption (in 

kWh) of establishment  within our sample 
in month t, while ws(r),t is a weight that de-
pends both on month t, and on the man-
ufacturing subsector of economic activity 

1 For the construction of IMAI-31-33, SNA uses information mainly from INEGI’s Monthly 
Survey on Manufacturing Industries (EMIM for its acronym in Spanish); this national-
level economic survey is also based on INEGI’s SBR master sample. See [1] for more 
information.



11Vol. 12, Núm. 3, septiembre-diciembre, 2021.

s(r) to which establishment r belongs t. 
Weights ws,t satisfy the convexity property; 
i.e., the sum of all weights for a fixed month  
equals 1. Table 2 shows typical values for 
weights ws,t.

2.   Re-scale time series st so that it coincides 
with Yt at a base period (say t = 1):. 

                                   

Xt = s t .   
Y1
s1

Manufacturing subsector weights ws,t, just 
like the IMAI-31-33 indicator, are also provid-
ed by SNA; furthermore, their availability coin-

cides with that of the IMAI 31-33 indicator; that 
is, weights ws,t are available approximately 40 
days after the end of the reference month. In 
order to estimate the manufacturing subsector 
weights for the reference month (say, month M) 
for which electric energy consumption data are 
already available, but not yet for the IMAI 31-33 
indicator, take the most recent weight ws,M-1 for 
manufacturing subsector s, and multiply it by 
the factor ws,M-12 /ws,M-13, which represents the 
monthly growth rate that weight ws,t experi-
enced a year before reference month M; in this 
way, we have:

     ws,M = (ws,M-12 / ws,M-13) ws,M-1 ,  

Table 2

Manufacturing subsector weights for month May 2019. These weights are provided 
by SNA and vary slightly from month to month

Manufacturing 
subsector s Description Weights ws,t 

(t corresponds to May 2019)

311 Food manufacturing 0.2295

312 Beverage and tobacco product manufacturing 0.0598

313 Textile mills 0.0086

314 Textile product mills 0.0045

315 Apparel manufacturing 0.0192

316 Leather and allied product manufacturing 0.0076

321 Wood product manufacturing 0.0089

322 Paper manufacturing 0.0176

323 Printing and related support activities 0.0058

324 Petroleum and coal products manufacturing 0.0136

325 Chemical manufacturing 0.0806

326 Plastics and rubber products manufacturing 0.0252

327 Nonmetallic mineral product manufacturing 0.0244

331 Primary metal manufacturing 0.0620

332 Fabricated metal product manufacturing 0.0315

333 Machinery manufacturing 0.0449

334 Computer and electronic product manufacturing 0.0873

335 Electrical equipment, appliance, and component 
manufacturing 0.0287

336 Transportation equipment manufacturing 0.2102

337 Furniture and related product manufacturing 0.0095

339 Miscellaneous manufacturing 0.0206
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where ws,M  is an estimate for weight ws,M .

The data (Xt, Yt) used in the analysis presented 
in sections 4 and 5 of this paper correspond to the 
data available to us back in the second half of 2015, 
when our objective was to build a “definitive” work-
ing model useful in explaining the relationship be-
tween Xt and Yt and at the same time useful in gen-
erating “nowcasts” for Yt. Thus, we have 34 monthly 
observations available for our present analysis: 
t=1 corresponds to January 2013, t=2 corre-
sponds to February 2013, ..., t=34 corresponds 
to October 2015. Figure 1 shows the time series 
corresponding to variables Xt and Yt. Additional-
ly, the values of these two variables are listed in 
appendix 1 of this document, for the sake of ex-
periment reproducibility.

4. Models fitted to the analysis     
      variables

Once the analysis variables Xt, Yt are prepared, the 
objective now is to generate “nowcasts” of Yt as a 

function of Xt for reference month t=M. To reach 
this aim, we chose to use linear regression models, 
commonly used in econometrics. This section des-
cribes the main models that we progressively fit-
ted to the analysis variables Xt and Yt, indicating in 
each case their characteristics. When we conduc-
ted this model construction exercise, back in 2015, 
our approach was to progressively find a regression 
model such that subsequent models improved 
upon the deficiencies found in its predecessors. 
This model construction exercise was done with 
help of the R Statistical Computing Software [2].

4.1 Simple linear regression model

The first model fitted to our data was a simple li-
near regression model of the form

                       Yt = α + ßX t+ ɛ t.               (1.0) 
      

For a model of the form (1.0) to be considered 
as an adequate fit to the data (Xt, Yt), in theory the 
disturbances εt must follow a white noise process; 

Time series for IMAI-31-33 ( Yt variable, bold line) and for the ICEE indicator (xt variable, thin line), shown across time interval January 2013 – October 2015. 
Note that monthly movements in both time series are similar to each other, which translates to a strong linear positive relationship (sample Pearson correlation coefficient equal to 0.93); this 

suggests the feasibility of estimating Yt values as a function of Xt values, via a linear regression model, since the most recent value for Xt is available almost a month before the official 
publication of the corresponding Yt value.

Figure 1
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i.e., εt variates must be independent and identical-
ly distributed, each with normal distribution with 
mean zero and constant variance σ2; to abbreviate, 
we denote this requirement as εt ~iid N(0, σ2). By 
using the data in appendix 1 to fit a model of the 
form (1.0) via Ordinary Least Squares (OLS), we ob-
tain the estimation equation:

           Yt = 43.14049 + 0.59528 X t ;  

thus, the estimated parameters are intercept α
=43.14049 (5.103), slope ß =0.59528 (0.043); figu-
res in parentheses indicate standard errors. From 
here, it is possible to see that both coefficients 
are statistically significant. Additionally, adjusted 
R2=0.852, and the corresponding F-test of overall 
significance has a p-value of 5.1 × 10-15. Model resi-
duals rt=Yt- Ŷt (sample estimates of the εt disturban-
ces) appear to be approximately centered around 0 
(min= -4.3, median= -0.04, max= 5.3). All these mo-
del hypothesis tests indicate a good fit so far. 

The corresponding fitted regression line is 
shown in Figure 2, along with data points (Xt, Yt) 
used to build model (1.0).

Before accepting this model as the definitive 
one, additional tests are necessary to verify that 
the residuals rt come from a white noise process. 
The Durbin-Watson (DW) test for the fitted model 
of the form (1.0) gives a test statistic equal to 1.11, 
with a p-value close to zero; this strongly suggests 
that we must reject the null hypothesis which 
states that the model residuals are serially uncor-
related; from this point, we conclude that there is 
strong evidence that the model residuals rt follow 
a 1st order autoregressive process. To correct the 
problem of auto-correlated residuals in a linear re-
gression model, there are several alternatives: one 
is to apply the Cochrane-Orcutt correcting proce-
dure to model the disturbances using a first-order 
autoregressive model of the form εt=ρεt-1 + vt, with 
vt ~iid N(0, σ2). A second alternative is to use gener-
alized least squares together with the autoregres-
sive structure of the εt disturbances (Cochrane-Or-
cutt uses OLS). A third option is to incorporate 
explanatory lagged variables Xt-1, Yt-1 into the re-

gression model; this third approach is known as 
auto-regressive modeling with distributed lags. For 
more information about these approaches, see [3].

An additional problem with this simple linear 
regression model (1.0) fitted to our data has to do 
with the outliers shown in Figure 2. As can be seen, 
outliers manifest themselves at different months, 
and for almost 3 years of monthly data values, 
there are outliers at October (outliers 22 and 34; 10 
is not an outlier, but it is not either one of the clos-
est points to the regression line). This suggests the 
need to add to subsequent linear regression mod-
els an indicator variable for the month of October 
as an explanatory variable; this indicator variable 
could be roughly defined as:

 
Ioct = { 1 if t corresponds to an octuber month

0 otherwise   .

Figure 2

Regression line Ŷt = 43.14049 + 0.59528Xt, together with data points (Xt, Yt ), 
t=1,2, …,34. Data points farthest from the regression line, vertically-wise (outliers), are 
labeled with the number of the month  to which they correspond; in this way, we see that 
outliers are present in sep-2013 (9), oct-2014 (22), nov-2014 (23), dec-2014 (24), and oct-2015 
(34). We also labeled oct-2013 (10), which is at a fair vertical distance from the regression 
line, without being an outlier.
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4.2 Autoregressive model with 
        distributed lags

If the disturbances from regression model (1.0) 
follow a first-order autoregressive process εt=ρεt-1 
+ vt, with vt ~iid N(0, σ2), which appears to be the 
case when fitting model (1.0) to our data, then it is 
possible to correct this autoregressive effect if we 
instead use a model of the form:

    Yt − ρYt-1 = α (1− ρ) + ß (X t − ρXt-1) + v t ,   (2.0)

which is obtained by subtracting ρYt-1 = αρ + βρXt-

1+ ρεt-1 from model (1.0). Of course, ρ corresponds 
to the autocorrelation coefficient which characteri-
zes the 1st, order auto-correlated disturbances from 
model (1.0). The Cochrane-Orcutt procedure ob-
tains an estimate of ρ using an iterative algorithm, 
although it is also possible to re-parameterize mo-
del (2.0) in order to obtain an autoregressive model 
with distributed lags of the form:

          Yt = α* + ρYt-1 + ß X t +  γ*  X t-1+ v t,    (2.1)

where α* represents the quantity α(1- ρ), and γ*   
represents the quantity -ρβ. The parameters from 
model (2.1) can be estimated via OLS.

By fitting a model of the form (2.1) to the data 
shown in appendix 1 via OLS, together with an in-
dicator variable Ioct, we obtained the following esti-
mation equation (note that, in this case, for variables 
Xt, Yt and Ioct, the initial value for t corresponds to          
February 2013):

Yt = 12.54 + 0.69Yt-1+ 0.52Xt − 0.33Xt-1+ 5.21Ioct .

It is possible to see that all regression coefficients 
in fitted model (2.1) are statistically significant; ad-
justed R2 = 0.948, and model residuals appear to be 
centered at zero (min = -2.6, median = 0.3, max = 2.0).

The Durbin-Watson test for fitted model (2.1) 
yields a test statistic equal to 2.44, with an associ-
ated p-value close to 0.3. From this point, we see 
that fitted model (2.1), which includes an indicator 
variable for October, is free of residual first-order 

autocorrelation, and all its explanatory variables 
are statistically significant. 

Additionally, a Breusch-Pagan test for heterosce-
dasticity (non-constant variance) was conducted 
on the model residuals, producing a test statistic 
equal to 0.716 with an associated p-value close to 
0.4; The Breusch-Pagan test’s null hypothesis states 
that there is no heteroscedasticity in the residuals; 
The p-value in this case tells us that there is not 
enough evidence to reject the null hypothesis, so 
it is concluded that fitted model (2.1) successfully 
passes the heteroscedasticity test.

Another test that can be done on the residuals 
from the fitted model with form (2.1) is that of 
Cramér-von Mises, to verify the normality of the 
residuals. In this case, we obtained a test statistic 
equal to 0.0502, with associated p-value close to 
0.5. In the Cramér-von Mises test, the null hypo-
thesis states that the residuals are normally distri-
buted; the p-value indicates that we cannot reject 
the null hypothesis, so it is concluded that the re-
siduals from model (2.1) are normally distributed. 

When working with linear regression models which 
contain two or more explanatory variables, as is the 
case with model (2.1), we must make sure that there 
is no high linear correlation among explanatory vari-
ables; for this, we applied a multicollinearity test (for 
more details, see [4]), obtaining Variance Inflation Fac-
tors (VIFs) equal to 7.6, 1.2 and 8.2; if any VIF is great-
er than 10, then we have multicollinearity problems, 
which does not occur in this case. Therefore, fitted 
model (2.1) does not have multicollinearity problems.

Finally, the graphs for the sample autocorrela-
tion function (ACF) and for the sample partial au-
tocorrelation function (PACF), shown in Figure 3, 
confirm that the residuals from fitted model (2.1) 
are uncorrelated over time.

From this point, we see that fitted model (2.1) is 
adequate, although it could be argued that it has 
several estimable parameters, and a couple of VIF’s 
are rather large. Next, we’ll investigate a more par-
simonious alternative.
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4.3 Logarithmic differences model

A proposed modeling alternative to that presen-
ted in subsection 4.2 is the logarithmic differences 
model, which is built by means of the following 
expression:

                  Δln(Yt) = ßΔln(Xt) + ɛt ,             (3.0)

where ∆ln(Yt): = ln(Yt) - ln(Yt-1) = ln(Yt/Yt-1) is the 
logarithmic difference of Yt, ∆ln(Xt): is the loga-
rithmic difference of Xt, β is the parameter to be 
estimated (via OLS), and εt are the usual stochas-
tic white-noise disturbances in a linear regression 
model. The advantage of this model lies in its parsi-
mony; that is, it is not necessary to estimate many 
parameters, unlike model (2.1). Note that this mo-
del does not directly estimate values for Yt; instead, 
it estimates the monthly growth rate of Yt. To see 
this, first note that ln (1 ± r) ≈ ± r if r is a reasona-
bly small value; for example, ln (1+0.05) = 0.04879 
≈ 0.05, while ln (1 + 0.05)= -0.05129 ≈ -0.05. Now, 
the logarithmic difference ∆ln(Yt) = ln(Yt/Yt-1) is 
in fact the natural logarithm of the variation of Yt 
with respect to its previous monthly value Yt-1; if 
this monthly growth is reasonably small, then Yt/
Yt-1 will be of the form 1+r; for example, if YT 118.1, 
YT-1 = 116.0, for t = T, then YT/YT-1 = 1.018103 = 1 + 
0.018103, which means that when t = T, Yt grows, 
or varies 1.8%, with respect to its previous monthly 
value Yt-1; note that in this example, ∆ln(YT) = ln(YT / 
YT-1) = 0.01794153 is reasonably close to the true Yt 
monthly growth rate for t = T.

Figure 4 shows a graph of the transformed 
variables ∆ln(Xt) and ∆ln(Yt), obtained directly 
from the data in appendix 1.

By fitting, via OLS, a model of the form 
(3.0) to the data represented graphically in 

Figure 3

Figure 4

Sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF) 
for residuals of fitted model (2.1). The lagged correlations do not extend beyond horizontal 
dotted lines, which indicates that there is no evidence of residual autocorrelation.

Variables ∆ln(Xt)  (thin line), ∆ln(Yt): (bold line) used in the construction of model (3.0). Notice that the initial value for t corresponds to February 2013; in this 
case, we cannot obtain ∆ln(Xt)   for January 2013. Sample Pearson correlation coefficient between variables is 0.91.
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Figure 4, together with an indicator variable 
for the months of October, we obtained the 
estimation equation Δln(Yt)  = 0.523002 ∆ln(Xt) 
+ 0.47991 Ioct. We also applied the same battery 
of tests from subsection 4.2 to the fitted mod-
el (3.0), without the multicollinearity test. We 
found out that fitted model (3.0) successfully 
passes all tests, except for the Durbin-Watson 
test, as can also be seen from Figure 5.  

To correct this 1st. order autocorrelation 
problem, we applied the Cochrane-Orcutt cor-
rection procedure, originally defined in [5], to 
fitted model (3.0); in this way, we obtained the 
estimation equation  Δln(Yt)  = 0.547802 ∆ln(Xt) + 
0.043357 Ioct, with residual term rt = ρrt-1, where 
ρ = -0.4277 (ρ is used to correct model coef-
ficients). This time, all tests on this corrected 
model (3.0) are successfully passed, getting an 
adjusted R2 equal to 0.93 and no autocorrela-
tion problems on model residuals, as Figure 6 
shows. 

Figure 6

Figure 5

Sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF) 
for residuals of fitted model (3.0). 1st. lag correlation extends beyond the lower horizontal 
dotted line, which indicates possible presence of 1st. order negative autocorrelation in the 
model residuals.

Sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF) 
for residuals of fitted model (3.0) with Cochrane-Orcutt correction. Lagged correlations do 
not extend beyond the horizontal dotted lines, which indicates that there is no evidence of 
residual autocorrelation.

We conclude that fitted model (3.0) with Co-
chrane-Orcutt correction passes all our criteria for 
obtaining an adequate linear regression model. 
In the next section we’ll test empirically the out-
of-sample forecasting accuracy of the models ob-
tained here. The results from this section and the 
next will help us to decide on a “definitive” model.

5. Comparisons of out-of-sample   
 estimates among regression 
 models

In this section we compute out-of-sample estimates 
using the models built in section 4 and then compa-
re such estimates against officially published values. 
As we previously saw, the data used to build our 
models span the time interval from January 2013 to 
October 2015; therefore, circumscribing ourselves 
to the data from appendix 1, we have the Novem-
ber 2015 Xt value as the only element for producing 
out-of-sample estimates for Yt values. Thus, in order 
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to “nowcast” the November 2015 IMAI 31-33 value, 
we incorporate the November 2015 ICEE value (na-
mely, 112.61) into the estimation equations obtai-
ned in section 4. It is worth mentioning that the 
models described in section 4 were originally built 
on December 9, 2015, and their predictions for the 
month of November 2015 were compared against 
the “observed” November 2015 value for the IMAI 
31-33 indicator, published on January 11, 2016 as a 
preliminary figure (namely, 117.5659). Additionally, 
with the published IMAI 31-33 figures, we obtained 
the observed (or “true”) annual and monthly growth 
rates: the observed annual growth rate of the IMAI 
31-33 indicator for November 2016 is 100(Ynov2015/
Ynov2014 - 1) = 100(117.5659/115.4457 - 1) = 1.84 (see 
appendix 1 for Ynov2014 value). Likewise, the obser-
ved monthly growth rate of the IMAI 31-33 indi-
cator for November 2016 is 100(Ynov2015/Yoct2015 - 1) 

= 100(117.5659/124.2666 - 1) = -5.39. Note that in 
the calculation of the observed monthly growth 
rate, we are using the revised figure for the Octo-
ber 2015 IMAI 31-33 indicator (124.2666) instead 
of the corresponding Yoct2015 value found in appen-
dix 1 (123.8842).

We’ll use these observed values as part of an ad-
ditional criterion for assessing the models built in 

section 4. Table 3 shows out-of-sample estimations 
from models (1.0), (2.1) and (3.0) along with their 
corresponding absolute errors with respect to ob-
served values.

Appendix 3 explains how the estimated values 
in table 3 were computed. 

Estimation errors shown in table 3 indicate us 
that the logarithmic differences model (3.0) with 
Cochrane-Orcutt correction produces the most 
accurate November 2015 IMAI 31-33 nowcasts. 
From the model diagnostics and hypothesis test-
ing procedures described in section 4, we see 
that both the distributed lags model (2.1) and 
the logarithmic differences model (3.0) with Co-
chrane-Orcutt correction have desirable statis-
tical properties, although model (2.1) has more 
estimable parameters than model (3.0) and could 
potentially be more unstable as new monthly 
observations become available. We then con-
clude that, from the models built in section 4, 
the logarithmic differences model (3.0) with Co-
chrane-Orcutt correction is the most parsimoni-
ous, robust and is the one which produces the 
most accurate forecasts; thus, we select model 
(3.0) as our “definitive” model.

Observed
value

Estimate
Model
 (1.0)

Absolute error 
Model 
(1.0)

Estimate 
Model (2.1)

Absolute error 
Model
 (2.1)

Estimate 
Model (3.0)

Absolute error 
Model 
(3.0)

IMAI 
31-33 117.57 110.17 7.40 114.56 3.01 116.09 1.48

Annual qrowth 
rate 1.84 -4.57 6.41 -0.77 2.61 0.56 1.28

Monthly 
growth rate -5.39 -11.07 5.68 -7.53 2.14 -6.50 1.11   

Table 3 

November 2015 out-of-sample estimations and absolute estimation errors for models (1.0), 
(2.0) and (3.0) with Cochrane-Orcutt correction
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Figures 7, 8, and 9 show graphs for in-sample and 
out-of-sample estimations produced with our de-
finitive model, using the data from appendix 1. The 
in-sample estimations for IMAI 31-33 values and for 
annual growth rates were obtained by applying the 
same expressions derived in appendix 3. 

6. Evaluating logarithmic 
      differences model in real time

Having decided on what model to use in order to 
generate subsequent nowcasts for the IMAI 31-33 
indicator, DVERA has fitted, on a monthly basis, li-

In-sample (from February 2013 to October 2015) and out-of-sample (November 2015) estimates of IMAI 31-33 monthly growth rates (dotted line), gener-
ated from the model (3.0) with Cochrane-Orcutt correction, via its estimation equation. Solid line represents observed IMAI 31-33 monthly growth rates. 
Correlation between observed and estimated values is 0.97.

Figure 7

Figure 8

In-sample and out-of-sample estimates of IMAI 31-33 annual growth rates (dotted line), generated from model (3.0) with Cochrane-Orcutt correction, by 
using the expression Δln(Yt) + Δln(Yt-1)  +  ...  + Δln(Yt-11)    . Solid line represents observed IMAI 31-33 annual growth rates. Correlation between observed 
and estimated values is 0.79.
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near regression models of the form (3.0) to produ-
ce such nowcasts, beginning at reference month 
August 2015, and verifying each time that the fi-
tted logarithmic differences model passes all the 
statistical tests for model adequacy. Figures 10, 11, 
and 12 show the comparisons of IMAI 31-33 now-
casts against published IMAI 31-33 values. It is wor-
th mentioning that these comparison graphs are 

updated each month, appending each new time an 
additional estimate and corresponding observed 
value, published as a preliminary figure (no revised 
figures for officially published IMAI 31-33 values 
are displayed in Figures 10, 11 and 12). Appendix 2 
shows a table with dates for reception of CFE data, 
calculation of nowcasts, and official publication of 
IMAI 31-33 values.

In-sample and out-of-sample estimates of IMAI 31-33 values (dotted line), generated from model (3.0) with Cochrane-Orcutt correction, by using the expres-
sion Δln(Yt)  Yt = Yt-1e  . Solid line represents observed IMAI 31-33 values. Correlation between observed and estimated values is 0.96.

Figure 9

Figure 10

Dashed lines represent the point and interval nowcasts for the IMAI 31-33 indicator, calculated from a logarithmic differences model, while solid line represents IMAI 31-33 official values, 
initially published as preliminary figures. The solid vertical line in this graph indicates a change of base year from 2008 to 2013 in officially published INEGI’s SNA figures, which includes the 
IMAI 31-33 indicator. Empirical correlation between observed and estimated values equals 0.94.



20 REALIDAD, DATOS Y ESPACIO    REVISTA INTERNACIONAL DE ESTADÍSTICA Y GEOGRAFÍA

Table 4 shows the distribution of absolute er-
rors between observed and estimated historical 
values. From Table 4 and from Figures 10, 11, and 
12, we can see that for any month in the time in-
terval August 2015 – February 2020, magnitudes 
of absolute estimation errors are similar across 
the 3 estimated quantities: index values, annu-
al and monthly growth rates. For most months, 
the officially published value has “landed” inside 
the 95% prediction intervals, which have a mean 
width of between 5 and 6 percentage points for 
any of the 3 estimated quantities (this means that, 
with 95% confidence, our point estimates have a 

maximum associated error of ±3%). Table 4 shows 
that, empirically, absolute errors tend to group 
around 1; a very few times, the absolute error has 
been close to 0, and a very few times, it has been 
large. In fact, only 4 times the observed IMAI 31-
33 value has landed outside the 95% prediction 
interval: in January 2016, in November 2016, in 
June 2017 and in July 2019. This means, that, em-
pirically, officially published values have landed 
inside the prediction intervals 92.7% of the time, 
which is close to the theoretical (or nominal) 
95% confidence level incorporated into predic-
tion intervals. 

Dashed lines are the point and interval nowcasts for the IMAI 31-33 annual growth rates, calculated from a logarithmic differences model, while solid line represents official values for IMAI 31-33 
annual growth rates, initially published as preliminary figures. Empirical correlation between observed and estimated values equals 0.73.

Dashed lines are the point and interval nowcasts for the IMAI 31-33 monthly growth rates, calculated from a logarithmic differences model, while solid line represents official values for IMAI 
31-33 monthly growth rates, initially published as preliminary figures. Empirical correlation between observed and estimated values equals 0.95.

Figure 11

Figure 12
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Table 4 

Index value
Annual 

growth rate
Monthly 

growth rate

minimum 0.00 0.00 0.00

1st quartile 0.46 0.40 0.44

median 1.26 1.01 0.91

mean 1.32 1.11 1.11

3rd quartile 1.70 1.44 1.42

maximum 5.27 4.14 4.34

As can be seen from Figure 10, there was a 
change in the base year for the IMAI 31-33 indica-
tor between September 2017 and October 2017; 
before that change, the IMAI 31-33 indicator aver-
age for the year 2008 was 100.00; after the change, 
the IMAI 31-33 indicator average for the year 2013 
is now 100.00. Basically, this only translates as a res-
caling of the IMAI 31-33 indicator; our procedure 
for estimating monthly growth rates via a logarith-
mic differences model is unaffected by this change 
in SNA methodology for constructing the IMAI 31-
33 indicator. Note that  values from appendix 1 cor-
respond to published IMAI 31-33 values under the 
2008 base year.

Evolution of the logarithmic differences 
model (3.0) 

The model chosen for producing successive IMAI 
31-33 nowcasts has basically retained its initial 
form across time interval August 2015 – February 
2020; the only modifications we have done to this 
“definitive” model consist in gradually adding (as 
needed) indicator variables for modeling signi-
ficant seasonal effects, similar to the Ioct indicator 
variable. The logarithmic differences linear regres-
sion model for producing the February 2020 IMAI 
31-33 estimates has the following functional form:

ΔlogYt = ß1ΔlogXt+ ß2Iaug+ ß3Ioct+ ß4Inov+ ß5Ijan+ ɛt,

where ΔlogYt and ΔlogXt are the respective loga-
rithmic differences for response and explanatory 

variables Yt and Xt at month t, as explained in sec-
tion 4; εt follows a first order autoregressive process 
which is corrected via the Cochrane-Orcutt proce-
dure. As of reference month February 2020, the es-
timation equation is: 

+ 0.0265Inov+ 0.0149Ijan

ΔlogYt = 0.5467ΔlogXt+ 0.0184Iaug+ 0.0420Ioct

We compared statistical tests outputs among all 
fitted logarithmic differences models of the form 
(3.0) across months and found out that the com-
mon estimated coefficients (for variables ΔlogXt 
and Ioct, and for coefficient ρ) have small variance. 
This is empirical evidence that the relationship be-
tween variables Xt, Yt is structurally stable across 
time, independent of business cycles.  

7. INEGI’s data sharing experience 
 with CFE, conclusions and future
 work

The monthly data on electric energy consumption 
that CFE transmits to INEGI are packed into 16 fi-
les, each corresponding to one of the 16 regions in 
which CFE divides the Mexican territory. Transmis-
sion of CFE data to INEGI is usually made two weeks 
after the end of the reference month; sometimes, 
however, due to technical or administrative diffi-
culties, CFE data have been transmitted to INEGI a 
few days later than usual. Overall, there have been 
no months during the realization of this project in 

Distribution of absolute estimation errors between observed and estimated historical values for IMAI 31-33 index values, annual and monthly growth rates. Estimated values were obtained 
with the logarithmic differences model across time interval August 2015 – February 2020.
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which no data has been received from CFE; this has 
enabled the successful realization of an empirical 
evaluation, in real time, of early IMAI 31-33 estima-
tes. In appendix 2, we can see the dates on which 
INEGI has received data on electric energy con-
sumption from CFE, and the comparison between 
early IMAI 31-33 estimates and published IMAI 
31-33 values. It is important to emphasize that the 
agreement between INEGI and CFE to share infor-
mation is rather informal, since a memorandum of 
understanding (MoU) has not been signed yet. As 
of this date, INEGI and CFE relationship continues 
to be cordial, and both institutions are working in 
the elaboration of a proper MoU.

The IMAI 31-33 nowcasts, generated from Au-
gust 2015 to February 2020 with the help of a log-
arithmic differences model relating manufacturing 
production level to electric energy consumption at 
national level, have been communicated to some 
Federal Government Agencies in Mexico, such as 
the Central Bank of Mexico (BANXICO), the Mexican 
Social Security Institute (IMSS), The Office of the 
Treasury and Public Credit (SHCP), the Tax Adminis-
tration Service (SAT), CFE itself, and some other key 
users within INEGI. Each month, right after gener-
ating nowcasts for the IMAI 31-33 indicator, DVERA 
prepares an official letter with a technical annex, 
which is sent to the INEGI Presidency, responsible for 
disseminating the results to other Federal Govern-
ment Agencies. This official letter clearly states that 
the results obtained are of an experimental nature. 
As of the writing of this article, INEGI is studying the 
possibility of publishing these results on its website, 
under the category of experimental statistics.

Some concluding remarks and possible 
lines for future work

By processing monthly electric energy consump-
tion data from the majority of large manufacturing 
establishments in Mexico, we have produced an 
electric energy consumption index that has a sig-
nificant linear relationship to the Monthly Manu-
facturing Production Level in Mexico. This enables 
INEGI to produce nowcasts for Mexico’s Manufac-

turing Production Level, given the timeliness in the 
availability of electric energy consumption data. 
The monitoring in real time of such nowcasts for 
the last four years has provided empirical evidence 
in favor of the structural stability of the relationship 
between electric energy consumption and produc-
tion level in Mexico’s manufacturing sector. In order 
to improve the quality of the IMAI 31-33 nowcasts, 
DVERA is working continually to keep an updated 
sample of large manufacturing establishments, 
and is monitoring the evolution of the variables in-
volved, in order to update the “definitive” model if 
the need arises.

As future work, INEGI is contemplating the possi-
bility of adding an additional explanatory variable 
to the “definitive” model; specifically, the explana-
tory variable considered is the monthly production 
of vehicles in Mexico’s automotive subsector; these 
data are collected jointly by the Mexican Associ-
ation of the Automotive Industry (AMIA) and by 
INEGI. It has been observed that this monthly vari-
able, which is updated only 10 days after the end of 
the reference month, has a high linear correlation 
with the IMAI 31-33 indicator. Preliminary exercises 
to build regression models with IMAI 31-33 as the 
response variable, and ICEE and the production 
of vehicles as explanatory variables, have already 
been carried out.
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Appendix 1. Data used in the construction of regression models

Xt variable (Electric Energy Consumption Indicator for Mexico’s Manufacturing Sector)

jan-13 106.568152673383 jan-14 114.625237758366 jan-15 117.661685560915

feb-13 102.206667645052 feb-14 107.385758694238 feb-15 113.239376473580

mar-13 109.354644360592 mar-14 121.593568885955 mar-15 127.468887386019

apr-13 114.018480260521 apr-14 115.651850551774 apr-15 121.600394586046

may-13 118.093431044136 may-14 122.944929934959 may-15 125.156131097925

jun-13 117.073664454848 jun-14 121.397629555821 jun-15 126.368183422728

jul-13 117.837745378730 jul-14 125.798065936502 jul-15 125.567145531943

aug-13 122.554400895002 aug-14 124.362758669831 aug-15 126.822346966188

sep-13 115.584758323962 sep-14 119.778461889876 sep-15 124.084937798500

oct-13 122.215669912183 oct-14 128.065613726125 oct-15 126.795582223334

nov-13 113.448650003214 nov-14 116.099148775570 nov-15 112.609678608192

dec-13 97.149123345972 dec-14 104.573452963140  

Yt variable (Manufacturing Production Level Index in Mexico)

jan-12 104.310303360161 jan-13 106.568152673383 jan-14 110.407782662540 jan-15 112.318007211117

feb-12 104.843887511884 feb-13 103.749250762350 feb-14 106.874856884563 feb-15 111.783049452478

mar-12 112.600605883904 mar-13 106.803072271226 mar-14 115.093379457459 mar-15 119.026895895035

apr-12 104.464240014746 apr-13 110.967188200699 apr-14 111.261263734624 apr-15 115.968640523484

may-12 111.753828772396 may-13 112.156581682476 may-14 116.957215562526 may-15 118.141639147214

jun-12 111.546679656662 jun-13 109.984403182279 jun-14 114.408078441256 jun-15 119.163876391430

jul-12 108.111150984771 jul-13 112.106373141296 jul-14 116.461208364193 jul-15 118.710597945713

aug-12 110.795476356651 aug-13 113.277152880165 aug-14 114.818286476764 aug-15 118.600066105228

sep-12 106.790160592184 sep-13 107.627008738172 sep-14 113.241801242496 sep-15 117.291984751955

oct-12 113.413349269598 oct-13 117.404211419188 oct-14 122.404319453146 oct-15 123.884236478199

nov-12 110.500150510510 nov-13 111.312710282635 nov-14 115.445734213437

dec-12 100.813657763214 dec-13 102.574854163090 dec-14 108.913118770310
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Month of 
Operation

CFE data 
reception date

Date of early 
estimate 

publication

IMAI 31-33 early estimates
SNA official 

values

Reference 
month

Lower 
limit

Upper limit
Point 

estimate
Observed 

value
Absolute 

error
Date of 

publication

dec-2015 08-dec-2015 11-dec-2015 nov-2015 113.6* 119.3* 116.4* 117.6 1.2 11-jan-2016

jan-2016 07-jan-2016 12-jan-2016 dec-2015 107.3 113.0 110.1 111.7 1.6 11-feb-2016

feb-2016 10-feb-2016 12-feb-2016 jan-2016 115.6 120.9 118.2 113.4 4.8 11-mar-2016

mar-2016 08-mar-2016 14-mar-2016 feb-2016 111.6 116.2 113.9 116.2 2.3 11-apr-2016

apr-2016 07-apr-2016 13-apr-2016 mar-2016 116.9 122.3 119.6 117.3 2.3 12-may-2016

may-2016 11-may-2016 13-may-2016 apr-2016 115.7 121.6 118.6 119.9 1.3 10-jun-2016

jun-2016 10-jun-2016 14-jun-2016 may-2016 117.5 123.5 120.4 119.2 1.2 12-jul-2016

jul-2016 12-jul-2016 18-jul-2016 jun-2016 116.3 122.2 119.2 120.6 1.4 11-aug-2016

aug-2016 10-aug-2016 12-aug-2016 jul-2016 117.6 123.5 120.5 118.9 1.6 09-sep-2016

sep-2016 12-sep-2016 14-sep-2016 aug-2016 118.2 124.8 121.4 123.5 2.1 12-oct-2016

oct-2016 12-oct-2016 14-oct-2016 sep-2016 116.6 123.0 119.8 117.9 1.9 11-nov-2016

nov-2016 14-nov-2016 15-nov-2016 oct-2016 120.9 128.2 124.5 123.2 1.3 12-dec-2016

dec-2016 13-dec-2016 14-dec-2016 nov-2016 114.6 120.7 117.6 122.9 5.3 11-jan-2017

jan-2017 13-jan-2017 19-jan-2017 dec-2016 111.8 118.1 114.9 114.4 0.5 10-feb-2017

feb-2017 17-feb-2017 17-feb-2017 jan-2017 112.7 119.9 116.2 117.7 1.5 14-mar-2017

mar-2017 16-mar-2017 17-mar-2017 feb-2017 113.5 121.8 117.6 117.0 0.6 11-apr-2017

apr-2017 21-apr-2017 24-apr-2017 mar-2017 121.4 127.7 124.5 126.9 2.4 12-may-2017

may-2017 16-may-2017 18-may-2017 apr-2017 116.9 122.9 119.9 117.0 2.8 09-jun-2017

jun-2017 13-jun-2017 15-jun-2017 may-2017 119.9 125.9 122.8 124.7 1.9 12-jul-2017

jul-2017 12-jul-2017 13-jul-2017 jun-2017 123.6 129.9 126.7 123.4 3.3 11-aug-2017

aug-2017 17-aug-2017 18-aug-2017 jul-2017 116.2 122.2 119.1 120.6 1.4 11-sep-2017

sep-2017 12-sep-2017 13-sep-2017 aug-2017 123.1 129.2 126.1 127.2 1.1 12-oct-2017

oct-2017 16-oct-2017 17-oct-2017 sep-2017 117.9 124.0 120.9 121.2 0.3 10-nov-2017

nov-2017 14-nov-2017 17-nov-2017 oct-2017 112.8 120.2 116.5 114.9 1.6 12-dec-2017

dec-2017 11-dec-2017 14-dec-2017 nov-2017 110.2 119.1 114.6 114.7 0.1 11-jan-2018

jan-2018 30-jan-2018 01-feb-2018 dec-2017 104.6 112.8 108.6 105.9 2.7 09-feb-2018

Appendix 2. Dates on reception of CFE data and production of early 
estimates; evaluation of early estimates for IMAI 31-33 values
              Continue
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Appendix 2. Dates on reception of CFE data and production of early 
estimates; evaluation of early estimates for IMAI 31-33 values
              Concludes

Month of 
Operation

CFE data 
reception date

Date of early 
estimate 

publication

IMAI 31-33 early estimates
SNA official 

values

Reference 
month

Lower 
limit

Upper limit
Point 

estimate
Observed 

value
Absolute 

error
Date of 

publication

feb-2018 22-feb-2018 27-feb-2018 jan-2018 107.6 114.7 111.1 111.5 0.4 13-mar-2018

mar-2018 16-mar-2018 23-mar-2018 feb-2018 105.4 111.9 108.6 108.4 0.2 11-apr-2018

apr-2018 19-apr-2018 04-may-2018 mar-2018 110.9 117.1 113.9 113.9 0.0 11-may-2018

may-2018 22-may-2018 04-jun-2018 apr-2018 110.1 116.2 113.1 112.5 0.6 11-jun-2018

jun-2018  20-jun-2018 05-jul-2018 may-2018 115.3 121.8 118.5 116.8 1.7 12-jul-2018

jul-2018 10-jul-2018 01-aug-2018 jun-2018 112.8 119.2 116.0 115.5 0.5 10-aug-2018

 aug-2018  17-aug-2018 03-sep-2018 jul-2018 108.6 114.7 111.6 112.8 1.2 11-sep-2018

 sep-2018 19-sep-2018 02-oct-2018 aug-2018 115.5 123.0 119.2 119.6 0.4 12-oct-2018

 oct-2018 19-oct-2018 30-oct-2018 sep-2018 111.4 117.8 114.5 113.3 1.2 09-nov-2018

 nov-2018 27-nov-2018 30-nov-2018  oct-2018 115.3 122.4 118.8 118.5 0.3 12-dec-2018

dec-2018 19-dec-2018 08-jan-2019 nov-2018 111.7 119.0 115.3 116.8 1.5 11-jan-2019

jan-2019 10-jan-2019 01-feb-2019 dec-2018 104.2 110.1 107.1 106.3 0.8 11-feb-2019

feb-2019 22-feb-2019 01-mar-2019 jan-2019 109.5 116.0 112.7 112.7 0.0 13-mar-2019

mar-2019 26-mar-2019 03-apr-2019 feb-2019 107.0 112.6 109.8 109.8 0.0 11-apr-2019

apr-2019 12-apr-2019 23-apr-2019 mar-2019 113.8 119.9 116.8 117.3 0.5 10-may-2019

may-2019 29-may-2019 31-may-2019 apr-2019 107.5 113.4 110.4 112.0 1.6 11-jun-2019

jun-2019 11-jun-2019 27-jun-2019 may-2019 114.1 120.3 117.2 117.8 0.6 12-jul-2019

jul-2019 10-jul-2019 22-jul-2019 jun-2019 113.4 119.5 116.4 114.9 1.5 9-aug-2019

 aug-2019 16-aug-2019 27-aug-2019 jul-2019 109.5 115.4 112.4 115.9 3.1 11-sep-2019

 sep-2019 20-sep-2019 27-sep-2019 aug-2019 117.3 124.5 120.8 119.2 1.6 11-oct-2019

 oct-2019 23-oct-2019 31-oct-2019 sep-2019 109.5 115.5 112.5 114.1 1.6 11-nov-2019

 nov-2019 26-nov-2019 05-dec-2019 oct-2019 113.5 120.2 116.8 116.8 0.0 12-dec-2019

dec-2019 13-dec-2019 19-dec-2019 nov-2019 112.5 119.5 115.9 114.0 1.9 10-jan-2020

jan-2020 27-jan-2020 05-feb-2020 dic-2019 103.0 108.8 105.9 105.7 0.2 11-feb-2020

feb-2020 26-feb-2020 06-mar-2020 ene-2020 109.2 115.7 112.4 113.1 0.7 13-mar-2020

mar-2020 13-mar-2020 24-mar-2020 feb-2020 106.2 112.0 109.1 109.3 0.2 8-apr-2020

* The November 2015 early estimate was obtained using model (3.0) without Cochrane-Orcutt correction.
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Appendix 3. Formulas for computing nowcasts using the models 
described in section 4

Model (1.0): the estimation for the November 2015 IMAI 31-33 value, Ŷt, was obtained by simply using the 
corresponding estimation equation, together with the Xt value for November 2015 from appendix 1; the 
estimation for the corresponding annual growth rate was computed by using the formula 100 (Ŷt /Yt-12-1), 
while the corresponding monthly growth rate was computed with the formula 100 (Ŷt /Yt-1-1); note that 
we must use the values from appendix 1 to compute the estimates for annual and monthly growth rates, 
since they are computed in real time; i.e., before the published revised figures Yt-12 and Yt-1 are available.

Model (2.1): the estimation for the November 2015 IMAI 31-33 value, Ŷt, as in the case of model (1.0), was 
obtained by using the corresponding estimation equation, together with the needed values Yt-1, Xt and Xt-1 
from appendix 1. The corresponding estimations for the annual and monthly growth rates were obtained 
using the same procedure as in the case of model (1.0).

Model (3.0) with Cochrane-Orcutt correction: unlike models (1.0) and (2.1), in this case we are direct-
ly estimating the November 2015 IMAI 31-33 monthly growth rate from the corresponding estimation 
equation; for this we need to plug in the values Xnov2015 and Xoct2015 from appendix 1; note that in this case, 
Ioct = 0. Now, to estimate the corresponding annual growth rate, we first note that log (Yt /Yt-12) acts as an 
approximation to the annual growth rate of Yt, in the same way log (Yt /Yt-1) acts as an approximation to the 
monthly growth rate of Yt; we also observe that:

                       

logYt − logYt-12 = logYt − logYt-1+ logYt-1− logYt-2

+ . . . + logYt-11− logYt-12

or equivalently, 

                                        
log (Yt  /Yt-12) =Δln(Yt) +Δln(Yt-1) + . . . + Δln(Yt-11).

From this last expression, it seems reasonable to approximate the annual growth rate of Yt for Novem-
ber 2015 by using the sum 

                                                       Δln (Yt )+Δln (Yt-1) + . . . + Δln (Yt-11) 

where Δln(Yt)    is the output from the estimation equation, and the quantities Δln(Yt-1), Δln(Yt-2) , ...  , Δln(Yt-11)      
can be computed from the data in appendix 1. This is precisely the procedure we used to estimate the an-
nual growth rate from model (3.0) shown in table 3.
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Finally, it is also possible to compute an estimation for the IMAI 31-33 indicator from the quantity Δln(Yt) ; 
just solve for Yt in expression ln (Yt )  – ln (Yt-1) = Δln (Yt): 

ln (Yt ) =Δln (Yt) + ln (Yt-1) 

Yt = e 
Δln (Yt) + ln (Yt-1)

Yt = Yt-1e 
Δln (Yt).

From this last expression, it seems reasonable to approximate by Yt using:

Yt = Yt-1e 
Δln (Yt) 

We used this last expression to estimate the IMAI 31-33 value from model (3.0) shown in table 3.


